Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Chem Biol Interact ; 365: 110097, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1982676

RESUMO

Remdesivir (RDV, Veklury®) is an FDA-approved prodrug for the treatment of hospitalized patients with COVID-19. Recent in vitro studies have indicated that human carboxylesterase 1 (CES1) is the major metabolic enzyme catalyzing RDV activation. COVID-19 treatment for hospitalized patients typically also involves a number of antibiotics and anti-inflammatory drugs. Further, individuals who are carriers of a CES1 variant (polymorphism in exon 4 codon 143 [G143E]) may experience impairment in their ability to metabolize therapeutic agents which are CES1 substrates. The present study assessed the potential influence of nine therapeutic agents (hydroxychloroquine, ivermectin, erythromycin, clarithromycin, roxithromycin, trimethoprim, ciprofloxacin, vancomycin, and dexamethasone) commonly used in treating COVID-19 and 5 known CES1 inhibitors on the metabolism of RDV. Additionally, we further analyzed the mechanism of inhibition of cannabidiol (CBD), as well as the impact of the G143E polymorphism on RDV metabolism. An in vitro S9 fraction incubation method and in vitro to in vivo pharmacokinetic scaling were utilized. None of the nine therapeutic agents evaluated produced significant inhibition of RDV hydrolysis; CBD was found to inhibit RDV hydrolysis by a mixed type of competitive and noncompetitive partial inhibition mechanism. In vitro to in vivo modeling suggested a possible reduction of RDV clearance and increase of AUC when coadministration with CBD. The same scaling method also suggested a potentially lower clearance and higher AUC in the presence of the G143E variant. In conclusion, a potential CES1-mediated DDI between RDV and the nine assessed medications appears unlikely. However, a potential CES1-mediated DDI between RDV and CBD may be possible with sufficient exposure to the cannabinoid. Patients carrying the CES1 G143E variant may exhibit a slower biotransformation and clearance of RDV. Further clinical studies would be required to evaluate and characterize the clinical significance of a CBD-RDV interaction.


Assuntos
Tratamento Farmacológico da COVID-19 , Canabidiol , Pró-Fármacos , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Alanina/farmacologia , Antivirais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Hidrolases de Éster Carboxílico/metabolismo , Humanos , Hidrólise , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
2.
Drug Metab Dispos ; 50(9): 1151-1160, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1923099

RESUMO

Molnupiravir is one of the two coronavirus disease 2019 (COVID-19) oral drugs that were recently granted the emergency use authorization by the Food and Drug Administration (FDA). Molnupiravir is an ester and requires hydrolysis to exert antiviral activity. Carboxylesterases constitute a class of hydrolases with high catalytic efficiency. Humans express two major carboxylesterases (CES1 and CES2) that differ in substrate specificity. Based on the structural characteristics of molnupiravir, this study was performed to test the hypothesis that molnupiravir is preferably hydrolyzed by CES2. Several complementary approaches were used to test this hypothesis. As many as 24 individual human liver samples were tested and the hydrolysis of molnupiravir was significantly correlated with the level of CES2 but not CES1. Microsomes from the intestine, kidney, and liver, but not lung, all rapidly hydrolyzed molnupiravir and the magnitude of hydrolysis was related closely to the level of CES2 expression among these organs. Importantly, recombinant CES2 but not CES1 hydrolyzed molnupiravir, collectively establishing that molnupiravir is a CES2-selective substrate. In addition, several CES2 polymorphic variants (e.g., R180H) differed from the wild-type CES2 in the hydrolysis of molnupiravir. Molecular docking revealed that wild-type CES2 and its variant R180H used different sets of amino acids to interact with molnupiravir. Furthermore, molnupiravir hydrolysis was significantly inhibited by remdesivir, the first COVID-19 drug granted the full approval by the FDA. The results presented raise the possibility that CES2 expression and genetic variation may impact therapeutic efficacy in clinical situations and warrants further investigation. SIGNIFICANCE STATEMENT: COVID-19 remains a global health crisis, and molnupiravir is one of the two recently approved oral COVID-19 therapeutics. In this study, we have shown that molnupiravir is hydrolytically activated by CES2, a major hydrolase whose activity is impacted by genetic polymorphic variants, disease mediators, and many potentially coadministered medicines. These results presented raise the possibility that CES2 expression and genetic variation may impact therapeutic efficacy in clinical situations and warrants further investigation.


Assuntos
Tratamento Farmacológico da COVID-19 , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Citidina/análogos & derivados , Interações Medicamentosas , Humanos , Hidrólise , Hidroxilaminas , Simulação de Acoplamento Molecular , Preparações Farmacêuticas/metabolismo , Polimorfismo Genético
3.
J Biol Chem ; 298(8): 102169, 2022 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1895142

RESUMO

Remdesivir and molnupiravir have gained considerable interest because of their demonstrated activity against SARS-CoV-2. These antivirals are converted intracellularly to their active triphosphate forms remdesivir-TP and molnupiravir-TP. Cellular hydrolysis of these active metabolites would consequently decrease the efficiency of these drugs; however, whether endogenous enzymes that can catalyze this hydrolysis exist is unknown. Here, we tested remdesivir-TP as a substrate against a panel of human hydrolases and found that only Nudix hydrolase (NUDT) 18 catalyzed the hydrolysis of remdesivir-TP with notable activity. The kcat/Km value of NUDT18 for remdesivir-TP was determined to be 17,700 s-1M-1, suggesting that NUDT18-catalyzed hydrolysis of remdesivir-TP may occur in cells. Moreover, we demonstrate that the triphosphates of the antivirals ribavirin and molnupiravir are also hydrolyzed by NUDT18, albeit with lower efficiency than Remdesivir-TP. Low activity was also observed with the triphosphate forms of sofosbuvir and aciclovir. This is the first report showing that NUDT18 hydrolyzes triphosphates of nucleoside analogs of exogenous origin, suggesting that NUDT18 can act as a cellular sanitizer of modified nucleotides and may influence the antiviral efficacy of remdesivir, molnupiravir, and ribavirin. As NUDT18 is expressed in respiratory epithelial cells, it may limit the antiviral efficacy of remdesivir and molnupiravir against SARS-CoV-2 replication by decreasing the intracellular concentration of their active metabolites at their intended site of action.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/metabolismo , Antivirais/farmacologia , Citidina/análogos & derivados , Humanos , Hidrólise , Hidroxilaminas , Polifosfatos , Pirofosfatases , Ribavirina/farmacologia , Ribavirina/uso terapêutico , SARS-CoV-2
4.
Carbohydr Res ; 516: 108564, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-1800172

RESUMO

Reaction of 2,3-O-isopropylidene-d-ribofuranosylamine with 2,4-dinitrofluorobenzene afforded the crystalline 2,3-O-isopropylidene-N-(2,4-dinitrophenyl)-ß-d-ribofuranosylamine (3) and a 1:1 crystalline complex of 2,3-O-isopropylidene-N-(2,4-dinitrophenyl-α-d-ribofuranosylamine and 2,3-O-isopropylidene-ß-d-ribofuranose; controlled acidic hydrolysis of 3 afforded N-(2,4-dinitrophenyl-α-d-ribopyranosylamine and not the expected ß-d-furanosylamine derivative. The structures of the new compounds were confirmed by NMR spectroscopy and X-ray crystallography.


Assuntos
Ribose , Amino Açúcares , Cristalografia por Raios X , Hidrólise , Espectroscopia de Ressonância Magnética , Ribose/análogos & derivados
5.
Daru ; 30(1): 245-252, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-1664547

RESUMO

INTRODUCTION: The high mortality rate in severe cases of COVID-19 is mainly due to the strong upregulation of cytokines, called a cytokine storm. Hyperinflammation and multiple organ failure comprise the main clinical features of a cytokine storm. Nrf2 is a transcription factor which regulates the expression of genes involved in immune and inflammatory processes. Furthermore, Nrf2, as a master regulator, controls the activity of NF-κB which binds to the promoter of many pro-inflammatory genes inducible of various inflammatory factors. Inhibition of Nrf2 response was recently demonstrated in biopsies from patients with COVID-19, and Nrf2 agonists inhibited SARS-CoV-2 replication across cell lines in vitro. Glucosinolates and their hydrolysis products have excellent anti-inflammatory and antioxidant effects via the Nrf2 activation pathway, reduction in the NF-κB activation, and subsequent reduced cytokines levels. CONCLUSION: Accordingly, these compounds can be helpful in combating the cytokine storm associated with COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Síndrome da Liberação de Citocina , Glucosinolatos , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas/metabolismo , Suplementos Nutricionais , Glucosinolatos/uso terapêutico , Humanos , Hidrólise , Fator 2 Relacionado a NF-E2 , NF-kappa B/metabolismo
6.
PLoS Biol ; 19(12): e3001510, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1592147

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects a broader range of mammalian species than previously predicted, binding a diversity of angiotensin converting enzyme 2 (ACE2) orthologs despite extensive sequence divergence. Within this sequence degeneracy, we identify a rare sequence combination capable of conferring SARS-CoV-2 resistance. We demonstrate that this sequence was likely unattainable during human evolution due to deleterious effects on ACE2 carboxypeptidase activity, which has vasodilatory and cardioprotective functions in vivo. Across the 25 ACE2 sites implicated in viral binding, we identify 6 amino acid substitutions unique to mouse-one of the only known mammalian species resistant to SARS-CoV-2. Substituting human variants at these positions is sufficient to confer binding of the SARS-CoV-2 S protein to mouse ACE2, facilitating cellular infection. Conversely, substituting mouse variants into either human or dog ACE2 abolishes viral binding, diminishing cellular infection. However, these same substitutions decrease human ACE2 activity by 50% and are predicted as pathogenic, consistent with the extreme rarity of human polymorphisms at these sites. This trade-off can be avoided, however, depending on genetic background; if substituted simultaneously, these same mutations have no deleterious effect on dog ACE2 nor that of the rodent ancestor estimated to exist 70 million years ago. This genetic contingency (epistasis) may have therefore opened the road to resistance for some species, while making humans susceptible to viruses that use these ACE2 surfaces for binding, as does SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Resistência à Doença/genética , Epistasia Genética , SARS-CoV-2/fisiologia , Aminoácidos , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Sítios de Ligação , COVID-19/enzimologia , COVID-19/genética , Cães , Evolução Molecular , Frequência do Gene , Humanos , Hidrólise , Camundongos , Mutação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral
7.
Carbohydr Polym ; 280: 119006, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1588175

RESUMO

Caulerpa lentillifera (Bryopsidophyceae, Chlorophyta) is an edible seaweed attracting great attention for its expansion of farming scale and increasing consumption in these years. In the present study, a sulfated polysaccharide (CLSP-2) was isolated and separated from C. lentillifera, and its chemical structure was elucidated by a series of chemical and spectroscopic methods. Among these methods, mild acid hydrolysis and photocatalytic degradation were applied to release mono- and oligo-saccharide fragments which were further identified by HPLC-MSn analysis, affording the information of the sugar sequences and the sulfate substitution in CLSP-2. Results indicated that the backbone of CLSP-2 was constructed of →6)-ß-Manp-(1→ with sulfated branches at C2, which were comprised of prevalent →3)-ß-Galp4S-(1→, →3)-ß-Galp2,4S-(1→, and minor Xyl. In addition, the virus neutralization assay revealed that CLSP-2 could effectively protect HeLa cells against SARS-CoV-2 infection with an IC50 of 48.48 µg/mL. Hence, the present study suggests CLSP-2 as a promising agent against SARS-CoV-2.


Assuntos
COVID-19/virologia , Caulerpa/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Antivirais/química , Antivirais/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Células HeLa , Humanos , Hidrólise , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Peso Molecular , Polissacarídeos/análise , SARS-CoV-2 , Alga Marinha/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sulfatos/química
8.
Chem Biol Interact ; 351: 109744, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1509623

RESUMO

Remdesivir, an intravenous nucleotide prodrug, has been approved for treating COVID-19 in hospitalized adults and pediatric patients. Upon administration, remdesivir can be readily hydrolyzed to form its active form GS-441524, while the cleavage of the carboxylic ester into GS-704277 is the first step for remdesivir activation. This study aims to assign the key enzymes responsible for remdesivir hydrolysis in humans, as well as to investigate the kinetics of remdesivir hydrolysis in various enzyme sources. The results showed that remdesivir could be hydrolyzed to form GS-704277 in human plasma and the microsomes from human liver (HLMs), lung (HLuMs) and kidney (HKMs), while the hydrolytic rate of remdesivir in HLMs was the fastest. Chemical inhibition and reaction phenotyping assays suggested that human carboxylesterase 1 (hCES1A) played a predominant role in remdesivir hydrolysis, while cathepsin A (CTSA), acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) contributed to a lesser extent. Enzymatic kinetic analyses demonstrated that remdesivir hydrolysis in hCES1A (SHUTCM) and HLMs showed similar kinetic plots and much closed Km values to each other. Meanwhile, GS-704277 formation rates were strongly correlated with the CES1A activities in HLM samples from different individual donors. Further investigation revealed that simvastatin (a therapeutic agent for adjuvant treating COVID-19) strongly inhibited remdesivir hydrolysis in both recombinant hCES1A and HLMs. Collectively, our findings reveal that hCES1A plays a predominant role in remdesivir hydrolysis in humans, which are very helpful for predicting inter-individual variability in response to remdesivir and for guiding the rational use of this anti-COVID-19 agent in clinical settings.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Carboxilesterase/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Alanina/química , Alanina/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Carboxilesterase/química , Catepsina A/química , Catepsina A/metabolismo , Humanos , Hidrólise/efeitos dos fármacos , Cinética , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Sinvastatina/farmacologia
9.
Chem Commun (Camb) ; 57(83): 10911-10914, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: covidwho-1488037

RESUMO

We present Zn2+-dependent dimethyl-dipyridophenazine PNA conjugates as efficient RNA cleaving artificial enzymes. These PNAzymes display site-specific RNA cleavage with 10 minute half-lives and cleave clinically relevant RNA models.


Assuntos
Ácidos Nucleicos Peptídicos/química , Fenazinas/química , Piridinas/química , RNA/química , Catálise , Concentração de Íons de Hidrogênio , Hidrólise , Ribonucleases/química , Zinco/química
10.
J Hazard Mater ; 424(Pt A): 127294, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1415558

RESUMO

Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792-30.0 MPa, varying the temperature (127-327 °C) and time (1-60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5 min) and high temperatures (above 277 °C), about 99% of HMWs were efficaciously converted to clean products by subcritical hydrothermal treatment. The results of hydrothermal extraction after 5 min indicated that at low temperatures (127-227 °C), the total organic carbon in the aqueous phase increased as the residual solid phase decreased, reaching a peak around 220 °C. Acetone soluble extracts or fat phase appeared above 227 °C and reached a maximum yield of 21% at 357 °C. Aspartic acid, threonine, and glycine were the primary amino acids; glycolic acid, formic acid, lactic acid, and acetic acid were obtained as the main organic acids, glucose, fructose, and cellobiose were substantial sugars produced from the aqueous phase after 5 min of hydrothermal subcritical hydrolysis extraction.


Assuntos
COVID-19 , Resíduos de Serviços de Saúde , Purificação da Água , Medicina Herbária , Humanos , Hidrólise , Pandemias , SARS-CoV-2 , Temperatura
11.
Nucleic Acids Res ; 49(18): 10604-10617, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1406489

RESUMO

RNA hydrolysis presents problems in manufacturing, long-term storage, world-wide delivery and in vivo stability of messenger RNA (mRNA)-based vaccines and therapeutics. A largely unexplored strategy to reduce mRNA hydrolysis is to redesign RNAs to form double-stranded regions, which are protected from in-line cleavage and enzymatic degradation, while coding for the same proteins. The amount of stabilization that this strategy can deliver and the most effective algorithmic approach to achieve stabilization remain poorly understood. Here, we present simple calculations for estimating RNA stability against hydrolysis, and a model that links the average unpaired probability of an mRNA, or AUP, to its overall hydrolysis rate. To characterize the stabilization achievable through structure design, we compare AUP optimization by conventional mRNA design methods to results from more computationally sophisticated algorithms and crowdsourcing through the OpenVaccine challenge on the Eterna platform. We find that rational design on Eterna and the more sophisticated algorithms lead to constructs with low AUP, which we term 'superfolder' mRNAs. These designs exhibit a wide diversity of sequence and structure features that may be desirable for translation, biophysical size, and immunogenicity. Furthermore, their folding is robust to temperature, computer modeling method, choice of flanking untranslated regions, and changes in target protein sequence, as illustrated by rapid redesign of superfolder mRNAs for B.1.351, P.1 and B.1.1.7 variants of the prefusion-stabilized SARS-CoV-2 spike protein. Increases in in vitro mRNA half-life by at least two-fold appear immediately achievable.


Assuntos
Algoritmos , RNA de Cadeia Dupla/química , RNA Mensageiro/química , RNA Viral/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Pareamento de Bases , Sequência de Bases , COVID-19/prevenção & controle , Humanos , Hidrólise , Estabilidade de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Viral/genética , RNA Viral/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Termodinâmica
12.
Nat Commun ; 12(1): 3061, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1387342

RESUMO

The SARS-CoV-2 pandemic has triggered global efforts to develop therapeutics. The main protease of SARS-CoV-2 (Mpro), critical for viral replication, is a key target for therapeutic development. An organoselenium drug called ebselen has been demonstrated to have potent Mpro inhibition and antiviral activity. We have examined the binding modes of ebselen and its derivative in Mpro via high resolution co-crystallography and investigated their chemical reactivity via mass spectrometry. Stronger Mpro inhibition than ebselen and potent ability to rescue infected cells were observed for a number of derivatives. A free selenium atom bound with cysteine of catalytic dyad has been revealed in crystallographic structures of Mpro with ebselen and MR6-31-2 suggesting hydrolysis of the enzyme bound organoselenium covalent adduct and formation of a phenolic by-product, confirmed by mass spectrometry. The target engagement with selenation mechanism of inhibition suggests wider therapeutic applications of these compounds against SARS-CoV-2 and other zoonotic beta-corona viruses.


Assuntos
Azóis/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Compostos Organosselênicos/farmacologia , SARS-CoV-2/enzimologia , Antivirais/farmacologia , Azóis/química , Domínio Catalítico , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Cisteína/química , Hidrólise , Isoindóis , Modelos Moleculares , Compostos Organosselênicos/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Padrões de Referência , SARS-CoV-2/efeitos dos fármacos , Salicilanilidas/química , Salicilanilidas/farmacologia , Selênio/metabolismo
13.
Angew Chem Int Ed Engl ; 59(45): 20154-20160, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1384106

RESUMO

Phosphoramidates composed of an amino acid and a nucleotide analogue are critical metabolites of prodrugs, such as remdesivir. Hydrolysis of the phosphoramidate liberates the nucleotide, which can then be phosphorylated to become the pharmacologically active triphosphate. Enzymatic hydrolysis has been demonstrated, but a spontaneous chemical process may also occur. We measured the rate of enzyme-free hydrolysis for 17 phosphoramidates of ribonucleotides with amino acids or related compounds at pH 7.5. Phosphoramidates of proline hydrolyzed fast, with a half-life time as short as 2.4 h for Pro-AMP in ethylimidazole-containing buffer at 37 °C; 45-fold faster than Ala-AMP and 120-fold faster than Phe-AMP. Crystal structures of Gly-AMP, Pro-AMP, ßPro-AMP and Phe-AMP bound to RNase A as crystallization chaperone showed how well the carboxylate is poised to attack the phosphoramidate, helping to explain this reactivity. Our results are significant for the design of new antiviral prodrugs.


Assuntos
Amidas/metabolismo , Aminoácidos/química , Nucleotídeos/metabolismo , Ácidos Fosfóricos/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Amidas/química , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Cristalografia por Raios X , Meia-Vida , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Simulação de Dinâmica Molecular , Nucleotídeos/química , Ácidos Fosfóricos/química , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Tratamento Farmacológico da COVID-19
14.
Angew Chem Int Ed Engl ; 60(40): 21662-21667, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: covidwho-1363645

RESUMO

There is an urgent need to develop antiviral drugs and alleviate the current COVID-19 pandemic. Herein we report the design and construction of chimeric oligonucleotides comprising a 2'-OMe-modified antisense oligonucleotide and a 5'-phosphorylated 2'-5' poly(A)4 (4A2-5 ) to degrade envelope and spike RNAs of SARS-CoV-2. The oligonucleotide was used for searching and recognizing target viral RNA sequence, and the conjugated 4A2-5 was used for guided RNase L activation to sequence-specifically degrade viral RNAs. Since RNase L can potently cleave single-stranded RNA during innate antiviral response, degradation efficiencies with these chimeras were twice as much as those with only antisense oligonucleotides for both SARS-CoV-2 RNA targets. In pseudovirus infection models, chimera-S4 achieved potent and broad-spectrum inhibition of SARS-CoV-2 and its N501Y and/or ΔH69/ΔV70 mutants, indicating a promising antiviral agent based on the nucleic acid-hydrolysis targeting chimera (NATAC) strategy.


Assuntos
Antivirais/farmacologia , Endorribonucleases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus/genética , Desenho de Fármacos , Células HEK293 , Humanos , Hidrólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mutação , RNA Viral/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
15.
Biomed Chromatogr ; 35(12): e5212, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1349236

RESUMO

Remdesivir (RDV) is the first antiviral drug, approved by the Food and Drug Administration, to treat severe acute respiratory syndrome coronavirus 2. RDV is a relatively new chemical entity, 'ester prodrug', with no reported stability profile. Due to the urgency of its use and thus fast production, it is important to develop a stability-indicating method for its assay. Chromatographic separation was carried out on a C18 column (250 × 4.6 mm, 5 µm) with dual detection: diode array at 240 nm and fluorescence at λex/em 245/390 nm. Isocratic elution of acetonitrile and distilled water (acidified with phosphoric acid, pH 4) in the ratio of 55:45 (v/v), respectively, was used. The linearity range using HPLC-diode array detection was 0.1-15 µg/mL, whereas that using fluorimetric detection was 0.05-15 µg/mL. As per the International Conference on Harmonization guidelines, RDV has been degraded by accelerated alkaline, acidic, neutral hydrolysis, oxidative, heat, and photolytic stress conditions. Possible degradation hypothesis of the parent molecule has been suggested and illustrated. The proposed methods have achieved selective determination of the intact drug with no peaks overlapping in all assumptions. Extensive degradation confirms threatened drug stability at thermal and basic hydrolytic stressing. The developed methods were fully validated and proved suitable for quality control routine analysis of RDV in raw material and pharmaceutical dosage forms.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/química , Tratamento Farmacológico da COVID-19 , Pró-Fármacos/química , Acetonitrilas/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Antivirais/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Estabilidade de Medicamentos , Temperatura Alta , Humanos , Hidrólise , Limite de Detecção , Oxirredução , Fotólise
16.
Clin Biochem ; 96: 56-62, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-1305215

RESUMO

OBJECTIVES: Camostat mesilate is a drug that is being repurposed for new applications such as that against COVID-19 and prostate cancer. This induces a need for the development of an analytical method for the quantification of camostat and its metabolites in plasma samples. Camostat is, however, very unstable in whole blood and plasma due to its two ester bonds. The molecule is readily hydrolysed by esterases to 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA) and further to 4-guanidinobenzoic acid (GBA). For reliable quantification of camostat, a technique is required that can instantly inhibit esterases when blood samples are collected. DESIGN AND METHODS: An ultra-high-performance liquid chromatography-tandem mass spectrometry method (UHPLC-ESI-MS/MS) using stable isotopically labelled analogues as internal standards was developed and validated. Different esterase inhibitors were tested for their ability to stop the hydrolysis of camostat ester bonds. RESULTS: Both diisopropylfluorophosphate (DFP) and paraoxon were discovered as efficient inhibitors of camostat metabolism at 10 mM concentrations. No significant changes in camostat and GBPA concentrations were observed in fluoride-citrate-DFP/paraoxon-preserved plasma after 24 h of storage at room temperature or 4 months of storage at -20 °C and -80 °C. The lower limits of quantification were 0.1 ng/mL for camostat and GBPA and 0.2 ng/mL for GBA. The mean true extraction recoveries were greater than 90%. The relative intra-laboratory reproducibility standard deviations were at a maximum of 8% at concentrations of 1-800 ng/mL. The trueness expressed as the relative bias of the test results was within ±3% at concentrations of 1-800 ng/mL. CONCLUSIONS: A methodology was developed that preserves camostat and GBPA in plasma samples and provides accurate and sensitive quantification of camostat, GBPA and GBA by UHPLC-MS/MS.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ésteres/sangue , Guanidinas/sangue , Espectrometria de Massas em Tandem/métodos , COVID-19/sangue , Inibidores Enzimáticos/farmacologia , Esterases/antagonistas & inibidores , Esterases/metabolismo , Ésteres/metabolismo , Ésteres/farmacologia , Guanidinas/farmacologia , Humanos , Hidrólise/efeitos dos fármacos , Isoflurofato/química , Isoflurofato/farmacologia , Paraoxon/sangue , Paraoxon/química , Paraoxon/farmacologia , Reprodutibilidade dos Testes , SARS-CoV-2/isolamento & purificação , Tratamento Farmacológico da COVID-19
17.
Molecules ; 26(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: covidwho-1282539

RESUMO

Furan-2-carboxylic acid was used as a starting material for the synthesis of dehydro-homopilopic acid. Esterification, hydrogenation and enzymatic hydrolysis followed by the reduction of Weinreb amides and a single-step attachment of a 1-methyl-imidazole residue allowed for the concise synthesis of both enantiomers of pilocarpine.


Assuntos
4-Butirolactona/análogos & derivados , Furanos/química , Pilocarpina/síntese química , 4-Butirolactona/síntese química , Amidas/química , Ácidos Carboxílicos/química , Esterificação , Hidrogenação , Hidrólise , Pilocarpina/química , Estereoisomerismo
18.
Blood ; 138(4): 344-349, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: covidwho-1255893

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with the hypercoagulable state. Tissue factor (TF) is the primary cellular initiator of coagulation. Most of the TF expressed on cell surfaces remains cryptic. Sphingomyelin (SM) is responsible for maintaining TF in the encrypted state, and hydrolysis of SM by acid sphingomyelinase (ASMase) increases TF activity. ASMase was shown to play a role in virus infection biology. In the present study, we investigated the role of ASMase in SARS-CoV-2 infection-induced TF procoagulant activity. Infection of human monocyte-derived macrophages (MDMs) with SARS-CoV-2 spike protein pseudovirus (SARS-CoV-2-SP-PV) markedly increased TF procoagulant activity at the cell surface and released TF+ extracellular vesicles. The pseudovirus infection did not increase either TF protein expression or phosphatidylserine externalization. SARS-CoV-2-SP-PV infection induced the translocation of ASMase to the outer leaflet of the plasma membrane, which led to the hydrolysis of SM in the membrane. Pharmacologic inhibitors or genetic silencing of ASMase attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Inhibition of the SARS-CoV-2 receptor, angiotensin-converting enzyme-2, attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Overall, our data suggest that SARS-CoV-2 infection activates the coagulation by decrypting TF through activation of ASMase. Our data suggest that the US Food and Drug Administration-approved functional inhibitors of ASMase may help treat hypercoagulability in patients with COVID-19.


Assuntos
COVID-19/sangue , Macrófagos/virologia , Proteínas de Membrana/fisiologia , SARS-CoV-2 , Esfingomielina Fosfodiesterase/fisiologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Trombofilia/etiologia , Tromboplastina/fisiologia , Enzima de Conversão de Angiotensina 2/fisiologia , COVID-19/complicações , Micropartículas Derivadas de Células , Ativação Enzimática , Humanos , Hidrólise , Macrófagos/enzimologia , Terapia de Alvo Molecular , Plasmídeos , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Virais/fisiologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielinas/fisiologia , Trombofilia/sangue , Trombofilia/tratamento farmacológico , Trombofilia/enzimologia
19.
Protein Expr Purif ; 185: 105894, 2021 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1209890

RESUMO

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or COVID-19) has led to a world-wild pandemic. The replication of SARS-CoV-2 RNA genome involves the core replication-transcription complex (RTC, nsp12-nsp7-nsp8) and the proofreading complex (nsp14-nsp10) that can correct mismatched base pairs during replication. Structures and functions of SARS-CoV-2 RTC have been actively studied, yet little is known about SARS-CoV-2 nsp14-nsp10. Here, we purified, reconstituted, and characterized the SARS-CoV-2 nsp14-nsp10 proofreading nuclease in vitro. We show that SARS-CoV-2 nsp14 is activated by nsp10, functioning as a potent RNase that can hydrolyze RNAs in the context of single- and double-stranded RNA and RNA/DNA hybrid duplex. SARS-CoV-2 nsp14-nsp10 shows a metal-dependent nuclease activity but has different metal selectivity from RTC. While RTC is activated by Ca2+, nsp14-nsp10 is completely inhibited. Importantly, the reconstituted SARS-CoV-2 nsp14-nsp10 efficiently removed the A:A mismatch at the 3'-end of the primer, enabling the stalled RTC to restart RNA replication. Our collective results confirm that SARS-CoV-2 nsp14-nsp10 functions as the RNA proofreading complex in SARS-CoV-2 replication and provide a useful foundation to understand the structure and function of SARS-CoV-2 RNA metabolism.


Assuntos
COVID-19/virologia , Exorribonucleases/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Cálcio/metabolismo , Ativação Enzimática , Humanos , Hidrólise , Especificidade por Substrato
20.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1006583

RESUMO

Macrodomains are proteins that recognize and hydrolyze ADP ribose (ADPR) modifications of intracellular proteins. Macrodomains are implicated in viral genome replication and interference with host cell immune responses. They are important to the infectious cycle of Coronaviridae and Togaviridae viruses. We describe crystal structures of the conserved macrodomain from the bat coronavirus (CoV) HKU4 in complex with ligands. The structures reveal a binding cavity that accommodates ADPR and analogs via local structural changes within the pocket. Using a radioactive assay, we present evidence of mono-ADPR (MAR) hydrolase activity. In silico analysis presents further evidence on recognition of the ADPR modification for hydrolysis. Mutational analysis of residues within the binding pocket resulted in diminished enzymatic activity and binding affinity. We conclude that the common structural features observed in the macrodomain in a bat CoV contribute to a conserved function that can be extended to other known macrodomains.


Assuntos
Adenosina Difosfato Ribose/química , Coronavirus/enzimologia , Pirofosfatases/química , Proteínas não Estruturais Virais/química , Animais , Sítios de Ligação , Quirópteros , Coronavirus/genética , Cristalografia por Raios X , Hidrólise , Pirofosfatases/genética , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA